Robust Multilevel Restricted Schwarz Preconditioners and Applications
نویسندگان
چکیده
We introduce a multi-level restricted Schwarz preconditioner with a special coarse-to-fine interpolation and show numerically that the new preconditioner works extremely well for some difficult large systems of linear equations arising from some optimization problems constrained by the incompressible Navier-Stokes equations. Performance of the preconditioner is reported for parameters including number of processors, mesh sizes and Reynolds numbers.
منابع مشابه
Multilevel Schwarz preconditioners for the Bidomain system and applications to electrocardiology
Mathematical modeling and computer simulation has become in recent years an important support to experimental studies, for investigating the bioelectrical activity in cardiac tissue. The most complete mathematical model of electrocardiology is the Bidomain model, a degenerate parabolic system of nonlinear reaction-diffusion equations, coupled with a system of ordinary differential equations. In...
متن کاملBlock Preconditioners for Linear Systems Arising from Multilevel RBF Collocation∗
Symmetric multiscale collocation methods with radial basis functions allow approximation of the solution of a partial differential equation, even if the right-hand side is only known at scattered data points, without needing to generate a grid. However, the benefit of a guaranteed symmetric positive definite block system comes at a high computational cost. In particular, the condition number an...
متن کاملParallel algebraic multilevel Schwarz preconditioners for a class of elliptic PDE systems
Algebraic multilevel preconditioners for algebraic problems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a po...
متن کاملParallel algebraic multilevel Schwarz preconditioners for elliptic PDE systems∗
Algebraic multilevel preconditioners for linear systems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a point-...
متن کاملParallel Multilevel Restricted Schwarz Preconditioners with Pollution Removing for PDE-Constrained Optimization
We develop a class of V-cycle type multilevel restricted additive Schwarz (RAS) methods and study the numerical and parallel performance of the new fully coupled methods for solving large sparse Jacobian systems arising from the discretization of some optimization problems constrained by nonlinear partial differential equations. Straightforward extensions of the one-level RAS to multilevel do n...
متن کامل